Fine Selmer groups and ideal class groups
نویسندگان
چکیده
Let K be a number field, let A an abelian variety defined over and $$K_\infty /K$$ uniform p-adic Lie extension. We compare several arithmetic invariants of Iwasawa modules ideal class groups on the one side fine Selmer varieties other side. If $$ contains sufficiently many p-power torsion points A, then we can ranks $$\mu -invariants these algebra. In special cases (e.g. multiple $$\mathbb {Z}_p$$ -extensions), also prove relations between suitably generalised $$\lambda two types modules. literature, different kinds have been introduced for groups. define analogues both concepts resulting invariants. order to obtain some our main results, new asymptotic formulas growth in -extensions.
منابع مشابه
Selmer Groups and the Eisenstein-klingen Ideal
0 Introduction The central point in the Bloch-Kato conjectures is to establish formulas for the order of the Selmer groups attached to Galois representations in terms of the special values of their L-functions. In order to give upper bound, the main way is to construct Euler systems following Kolyvagin. Besides, lower bounds have been obtained by using congruences between automorphic forms. So,...
متن کاملCongruences between Selmer groups ∗
The study of congruences between arithmetically interesting numbers has a long history and plays important roles in several areas of number theory. Examples of such congruences include the Kummer congruences between Bernoulli numbers and congruences between coefficients of modular forms. Many of these congruences could be interpreted as congruences between special values of L-functions of arith...
متن کاملSelmer Groups as Flat Cohomology Groups
Given a prime number p, Bloch and Kato showed how the p8-Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the p-Selmer group Selpm A need not be determined by the mod p Galois representation Arps; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes Σ depen...
متن کاملFinding Large Selmer Groups
Raoul Bott has inspired many of us by the magnificence of his ideas, by the way he approaches and explains mathematics, and by his warmth, friendship, and humor. In celebration of Raoul’s eightieth birthday we offer this brief article in which we will explain how the recent cohomological ideas of Jan Nekovár̆ [N2] imply (under mild hypotheses plus the Shafarevich-Tate conjecture) systematic grow...
متن کاملSelmer Groups and Quadratic Reciprocity
In this article we study the 2-Selmer groups of number fields F as well as some related groups, and present connections to the quadratic reciprocity law in F . Let F be a number field; elements in F× that are ideal squares were called singular numbers in the classical literature. They were studied in connection with explicit reciprocity laws, the construction of class fields, or the solution of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ramanujan Journal
سال: 2022
ISSN: ['1572-9303', '1382-4090']
DOI: https://doi.org/10.1007/s11139-022-00619-8